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Introduction
• Thermal deformation is one of the major sources that can 

degrade the performance of a space telescope or antenna.
• Structural Thermal Optical Performance (STOP) analysis is 

the tool to assess the performance of a space instrument 
under thermal loads.

• STOP analysis includes
✓ Thermal analysis
✓ Structural (thermo-elastic) analysis
✓ Optical analysis

• This talk addresses the STOP analysis from the standpoint of 
a structural analyst.
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Structural Model
• Structural model for STOP analysis

✓ Output request: displacements only.  Requires relatively 
coarse mesh, compared to models used for stress analysis.

✓ A lot of analysis to perform.
✓ Try to minimize the size of the STOP model
✓ Can be used for other analysis, i.e., modal analysis, jitter 

analysis, random vibe analysis

575 nodes 221279 nodes208487 nodes

Feed ( from Faz Keyvanfar)

SWOT Instrument 
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Construction of Models

• Thermal model and structural model constructed based on 
the same CAD model
✓ Mesh size may be different
✓ Fidelity of components may be different 

• Thermal model must include features important to 
structural analysis ‒ not true vise versa.

SWOT - Hexafoil
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Temperature Dependent CTE
• Due to the requirement for high accuracy, temperature dependent CTE 

is used for calculating thermal loads.
• When using temperature dependent CTE, there are some limitations on 

the structural model:
✓ No RBE1 or RBE2 elements on load path – although Rigid Body Elements 

can be assigned CTE, the CTE is constant.  Can be replaced by stiff PBEAM 
elements

✓ No PBAR elements – PBAR does not accept temperature dependent 
material properties. Can be replaced by PBEAM elements

✓ No composite laminate elements – PCOMP does not accept temperature 
dependent material properties.  Can be replaced by PSHELL elements.

✓ CROD, CBEAM, CGAP, CQUAD4, CQUAD8, CTRIA3, CTRIA6, CHEXA, and 
CTETRA elements can be used. 

• Control cards for analysis with temperature dependent CTE
✓ Use TEMP(BOTH) only - TREF of the MAT must be defined correctly
✓ If TEMP(INIT) and TEMP(LOAD) are used, Nastran picks the CTE at the initial 

temperature (wrong).
✓ If only TEMP(LOAD) is used, Nastran picks the constant CTE assigned by the 

MAT cards (wrong).
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Temperature Dependent CTE
(cont.)

• Nastran takes Secant CTE
✓ Construct the Secant CTE table based on the reference temperature

CTE at -50 ⁰C
Tangential 
Secant based on 20 ⁰C
Secant based on 50 ⁰C

20
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CTE for RBE3
• RBE3’s can be used to spread load and mass for devices such 

as electronic boxes, etc.
• Whether CTE is assigned to a RBE3 depends on the purpose. 

✓ Example 1: for optics w/o detailed design on WFIRST Coronagraph 
Bench, CTE of supporting structure is assigned to the RBE3’s

✓ Example 2: at the I/F of star trackers and supporting brackets where 
RBE3’s are used to calculate the average of I/F translations and 
rotations, no CTE is assigned

WFIRST Coronagraph Bench SWOT Star Tracker
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Model Check

• Nastran Groundcheck
✓ Perform grounding check analysis on the stiffness matrix to expose 

unintentional constraints by moving the model rigidly.

• Maximum Diagonal Ratio < 1E+7
✓ An error indicates unconstrained mechanism, bad connection of 

different types of elements, etc.

• NASTRAN Epsilon < 1E-8
✓ A measure of numerical accuracy and round off error
✓ A ratio of work done by residual forces to the work done by the 

applied forces

• Free-Free Modal Checks
✓ In unconstrained condition, the model should have six rigid body 

modes with frequencies below 0.005 Hz
✓ The ratio of the lowest elastic mode frequency and the highest rigid 

body mode frequency should be greater than 10
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Temperature Loading Checks

• Loading temperature equals reference temperature (ΔT = 0)
✓ Forces and moments less than 0.01 N and 0.01 N-m
✓ Displacements less than 1E-12 m
✓ Make sure TREF field in MAT and PCOMP cards are set correctly

• Temperature perturbation about nominal temperature
✓ Assign the same CTE to all materials
✓ Kinematically constrain the model
✓ The worst-case difference in magnitude between the model and 

analytic prediction at any optically significant point should be less 
than 1e-9 meters
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Temperature Mapping
• Temperature mapping is required because 

the thermal model and the structural 
model are different.
✓ Due to the nature of thermal analysis (lots of 

iterations), thermal model can’t afford the 
same fidelity and fine mesh as structural 
model can.

• Temperature distribution across the 
system is derived through thermal analysis 
using thermal model.

• Thermal distortion is calculated through 
thermo-elastic analysis using structural 
model.
✓ Temperature distribution from thermal model 

must be mapped onto the structural model.

Thermal model

Structural model

SWOT – Metering Structure
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Temperature Mapping 
Quality Check

• Make sure all the structural nodes are mapped.  If not:
✓ Increase tolerance – increase the distance the tool is allowed to 

search for thermal nodes.
✓ Run a steady state thermal analysis using the structural model, 

with the mapped temperature as fixed Boundary condition.

• Compare contour plot ranges and gradients between 
thermal and structural models

SWOT – KaRIn Module

Thermal 
model

Structural 
model
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Temperature Mapping 
Quality Check (cont.)

Two MatLab scripts were written to monitor the temperature time history.
• Plot time histories of average temperature of subsystems.
• Check the time history of each and every node.  Signal the time steps and nodes 

that show drastic temperature change between 2 consecutive steps.

AM

Nadir
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Temperature Mapping 
Quality Check (cont.)

The figure indicates which subsystem (nodes of the same subsystem are 
grouped together) and time steps may have problems.
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Empirical Modeling
SWOT IRA

Background
• Thermal test performed on EM of IRA

✓ 4x thermal cases: -20 C, -10 C, +60 C, +92 C

• Correlation between prediction and test is not good.

Measurement Locations

EM Truss
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Simplification of the Problem
(methodology conceived by Eric Slimko)

• The thermoelastic test data was significantly different than 
pre-test predictions in a non-obvious pattern.

• The KaRIn instrument is sensitive primarily to the orientation 
and location of the best-fit plane to the reflectarray.

• Calculate Best-fit plane for both prediction and test 
measurements and compare.

Measurement Locations

X

Y
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Angular Results

The error in X and Y angles between the actual and the prediction is linear in 
temperature.  This suggest there is a simple correction to a single CTE across the 
temperature range will correct the prediction. qx is off by 0.151 milli-degree/C 
and qy is off by 0.011 milli-degree/C. 
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Displacement Results

The error in average Z displacement between the measurement and the 
prediction is linear in temperature by 0.79 microns/C.   This suggests a simple 
correction to a single CTE will resolve the issue.



Pg: 19

© 2017 California Institute of Technology. Government sponsorship acknowledged.

Best-Fit Plane Conclusion

• Given that the primary parameters of concern at the system level are 
the angular orientation and displacement of the best-fit plane to the 
reflectarray, this analysis suggests the difference between test 
measurement data and the test prediction may be resolved with 
straightforward changes to a very limited set of CTE parameters

• In the near term, we’d like to use this simplified strategy to quickly 
adjust the existing model to envelope the test data such that we can 
use this “quasi-empirical” model in system level analysis

• In the longer term, this strategy may provide guidance for 
understanding what the correlation issue actually is
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Sensitivity Study of IRA Truss

• CDR STOP FEM model used for the study
• Thermal soak analysis done at -50 ⁰C (reference = 20 ⁰C)
• CTE of longeron or diagonal truss members changed by         

1 ppm/ ⁰C)
• Displacement and rotation of reflector panels calculated

Longeron Diagonal
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Sensitivity Study of IRA Truss
(cont.)

Z-Disp (micron/C) X-rotation (milli-deg/C) Y-rotation (milli-deg/C)

0.0409 0.202 0.016

Sensitivity for +1 ppm/ ⁰C change of diagonal CTE 

Difference between measurement and prediction

Z-Disp (micron/C) X-rotation (milli-deg/C) Y-rotation (milli-deg/C)

0.79 0.151 0.011

Measurement Locations

X

Y

Z-Disp (micron/C) X-rotation (milli-deg/C) Y-rotation (milli-deg/C)

0.0409 0.202 -0.016


